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Abstract

Many existing phase-aware speech enhancement algorithms
consider the phase at all spectral frequencies to be equally im-
portant to perceptual quality and intelligibility. Although im-
provements are observed according to both objective and sub-
jective measures, as compared to phase-insensitive approaches,
it is not clear whether phase information is equally impor-
tant across the frequency spectrum. In this paper, we in-
vestigate the importance of estimating phase across spectral
regions, by conducting a pairwise listening study to deter-
mine if phase enhancement can be limited to certain frequency
bands. Our experimental results suggest that estimating phase
at lower-frequency bands is mostly important for speech qual-
ity in normal-hearing (NH) listeners. We further propose a hy-
brid deep-learning framework that adopts two sub-networks for
handling phase differently across the spectrum. The proposed
hybrid-net significantly improves the model compatibility with
low-resource platforms while achieving superior performance
to the original phase-aware speech enhancement approaches.
Index Terms: speech enhancement, phase, speech perception

1. Introduction

Environmental noise significantly influences communication
between humans and with many applications, such as auto-
matic speech recognition (ASR) and hearing-aids. Numerous
speech enhancement algorithms have been proposed to allevi-
ate this speech-in-noise problem [} [2, 3| |4, 5| 6], where they
can generally be divided into phase-insensitive and phase-aware
approaches. With phase-aware speech enhancement, the ap-
proaches, in general, simultaneously enhance the magnitude
and phase responses of noisy speech, after generating a time-
frequency (T-F) representation using the short-time Fourier
transform (STFT). Phase-insensitive approaches, on the other
hand, only enhance the magnitude response.

Multiple studies have shown the perceptual speech qual-
ity benefits that phase-aware speech enhancement offers to nor-
mal hearing (NH) listeners [[7} 8], and its potential benefits to
hearing impaired (HI) listeners [9} [10]. Many existing phase-
aware speech enhancement approaches allocate the same com-
putational resources to all frequency regions during phase esti-
mation [2, |11, [12], which, in turn, assumes that the estimated
phase, at each frequency, is equally important to speech qual-
ity for human listeners. The contributions of various frequency
regions to speech understanding, i.e., speech intelligibility, has
been extensively studied over the past decades [[13} 1141 15, [16].
As a result, band importance functions (BIF) have been widely
used to characterize the relative importance of different fre-
quency bands to speech intelligibility. It has been reported that
the most important spectral regions for speech understanding
are at frequencies between 1600 to 2000 Hz [17, [18]. These

conclusions, however, are with regards to the magnitude re-
sponse of speech, and do not consider changes to the phase
spectrum. Hence, little is known about how phase from dif-
ferent frequency bands contributes to the the underlying mech-
anisms of perceived speech quality. From a practical point of
view, understanding the impact that different frequency bands
of the phase response have on speech quality could help con-
serve computational resources for more perceptually important
regions and may potentially reduce model complexity.

In this work, we hypothesize that phase information from
different spectral regions does not uniformly contribute to
speech quality. Specifically, we conjecture that pitch percep-
tion plays an important role in quality judgement. Pitch of
a broadband periodic signal, such as the voiced segments in
speech, is coded mainly by temporal fine structure (TFS) cues
and spectral cues of resolved harmonics at low frequencies
[19, 20, 21]. At high frequencies, when the individual har-
monics can no longer be resolved by the peripheral auditory
system, temporal envelope cues may also contribute to weak
pitch perception [22]. Given the greater importance of low
frequencies for pitch perception, it may be also more impor-
tant to accurately estimate phase information at low frequencies
compared to high frequencies. To verify this, we examine the
band importance of phase estimation for speech quality judge-
ment by systematically removing the phase information of high-
frequency regions. Two versions of enhanced speech are com-
posed from a phase-insensitive and a phase-aware speech en-
hancement model [23,24]]. In particular, the low-frequency por-
tion of the phase-aware enhanced speech is manually merged
with the high-frequency portion of the phase-insensitive en-
hanced speech to generate the speech stimuli with different
phase information across spectral regions. We will refer to
these stimuli as the filtered-merged speech below. A listen-
ing study is conducted, in which participants compared the per-
ceived speech quality between the full-band phase-aware and
the filtered-merged speech. If participants fail to discriminate
the two stimuli, then it would indicate that high-frequency phase
information does not influence speech quality in a perceptually
significant manner.

Furthermore, a novel hybrid speech enhancement frame-
work is proposed driven by the findings of band importance of
phase estimation. Specifically, the proposed hybrid-net adopts
different strategies dealing with phase estimation in different
frequency regions. A phase-aware deep-learning sub-network is
adopted for low-frequency bands and another phase-insensitive
sub-network is applied for high-frequency bands, based on our
findings that low-frequency phase estimation contributes mostly
to speech quality. The approaches are evaluated on a simulated
speech corpus using a human listening study. Network statis-
tics including network size and computational cost are also re-
ported.



The rest of this paper is organized as follows. Section2]de-
scribes the method to investigate the band importance of phase
estimation. Section [3] introduces the band importance-driven
hybrid-net and reports the performance from a listening study.
Finally, we discuss the results and findings in section[4]

2. Band importance for phase estimation

To investigate the importance of estimating phase at different
frequency bands, we first generate speech samples by merging
the enhanced speech produced by two independent speech en-
hancement algorithms (i.e., phase-aware and phase-insensitive).
In particular, the low-frequency components of phase-aware en-
hanced speech are combined with the high-frequency compo-
nents of phase-insensitive enhanced speech, and the crossover
frequency is systematically varied. If listeners cannot tell a dif-
ference after replacing high-frequency component with phase-
insensitive speech above a certain crossover frequency, then we
may infer that the phase information above the crossover fre-
quency does not significantly contribute to speech quality. Ac-
cordingly, we conduct a pairwise comparison listening study
between filtered-merged and full band phase-aware enhanced
speech to find the crossover frequency where the benefits from
phase-aware speech enhancement start to diminish.

2.1. Speech materials and system configurations

A total of 1440 clean speech utterances (i.e., 720 utterances for
each gender) from IEEE corpus [25] are used. In the training
set, 80% of them are mixed with eight different noises, includ-
ing multi-talker babble, factory, cafeteria, thunderstorm, wash-
ing machine, vacuum, train and engine noises from AzBio [26]],
NOISEX-92 [27]] and ESC-50 corpora [28]. The signal-to-noise
ratios (SNRs) in the training set range from -6 to 0 dB with
a step size of 1 dB, resulting in 64512 mixtures. 10% of the
speech signals are used to generate the development and testing
sets. Similar to the setup described in [24], we mix the speech
with factory noise at a -5 dB SNR in the development set. In
the testing set, the remaining 10% of the speech utterances are
mixed with babble and cafeteria noises at -5, 0, and 5 dB SNRs
(864 mixtures in total). All signals are resampled to 16 kHz be-
fore further processing. We use a 320-point FFT together with
a 20 ms hamming window (10 ms hop size) for the STFT.

We adopt two state-of-the-art speech enhancement models,
based on the convolutional recurrent network (CRN) [23] 24],
for phase-insensitive and phase-aware speech enhancement, re-
spectively. The CRNs feature an encoder-decoder-like architec-
ture, with a recurrent block between the encoder and decoder to
help capture the temporal correlations. Similar to the original
works [23}124], there are five convolution/deconvolution blocks
in the encoder/decoder, with T'¢me X Frequency = 1 x 3 ker-
nels. The output channels are set to (16, 32, 64, 128, 256) in the
encoder, and (128, 64, 32, 16, 1) in the decoder. Batch normal-
ization [29] and exponential linear units (ELU) [30] are applied
after each convolution/deconvolution layer except in the out-
put layer. Skip connections are also used between the encoder
and decoder. The recurrent block is based on long short-term
memory (LSTM) cells with two layers and 1024-units each.
To merge the enhanced speech signals from the two models,
the output of the phase-insensitive model is high-pass filtered
while the output of the phase-aware model is low-pass filtered
using Butterworth filters with a 70-dB attenuation in the stop
band. The crossover frequencies between the high- and low-
frequency components are 250, 1000, 2000, 4000 Hz in separate

conditions. For each crossover frequency, there are 20 enhanced
speech utterances randomly selected for the testing set. Half of
them with original SNR at -5 dB and the other half at 5 dB.

2.2. Procedure

A total of 20 participants were recruited (12 males and 8 fe-
males), ranging from 23 to 58 years of age (avg. 35.6 years)
using Amazon Mechanical Turk. All participants were native
speakers of American English that self-reported to have normal
hearing (NH). This study was approved by the Institutional Re-
view Board (IRB) at Indiana University and the University of
Washington. Informed consent was obtained from all partici-
pants before data collection began.

All participants self-reported that they were seated in a
quiet environment during the listening study. A behavioral
headphone check procedure, based on discrimination of bin-
aural pitch 31} 132], was first included to ensure headphones
were worn by all participants. The headphone check would fail
if loudspeakers were used or the headphone was only worn on
one ear.

Following the headphone check, five practice trials were
conducted to familiarize the subjects with the experimental task
and to allow them to adjust the volume to a comfortable level. In
each practice trial, the participant compared the quality between
a pair of full band phase-insensitive and phase-aware enhanced
speech. The participant had the opportunity to replay each of
the stimuli an unlimited number of times.

In the main experimental task, the participants compared
pairs of full band phase-sensitive enhanced speech and filtered-
merged speech. As in the practice trials, the participant was able
to replay each of the stimuli multiple times, before identifying
the one with a higher perceived quality. The order of the two
stimuli was permuted across trials. The crossover frequencies
for the filtered-merged speech were 0 Hz (i.e., using original
noisy phase for reconstruction, the phase-insensitive model, de-
noted as ‘Mag.”), 250 Hz, 500 Hz, 1000 Hz, 2000 Hz and 4000
Hz. There were a total of 120 trials with 120 different test sen-
tences (i.e., 10 repetitions X 2 SNRs X 6 crossover frequen-
cies), tested in random order.

2.3. Results

For each crossover frequency, the discriminability between the
full-band phase-aware and filtered-merged speech is summa-
rized using the d’ (d-prime) metric, which is defined as [33]:

d = z2(H) — z(F), (1)

where z denotes the z-transform (i.e., inverse Gaussian distri-
bution), H and F' represent the hit rate and false alarm rate,
respectively. A hit occurs when the full-band phase-aware en-
hanced speech is chosen as the preferred stimulus; a false alarm
occurs when the filtered-merged speech is chosen as the pre-
ferred one. Note that a positive d’ indicates a preference to-
wards full-band phase-aware enhanced speech. A d’ close to
zero indicates that the listeners cannot reliably differentiate the
difference between the two stimuli. The estimated d’ will be
used as the dependent variable to study the effects of crossover
frequency and SNR.

Figure provides the d’ values for each condition (‘Mag.’
indicates the phase-insensitive model). Note that all condi-
tions are compared against the stimuli generated by the full-
band phase-aware speech enhancement model. It is observed
that the d’ value decreases as the crossover frequency increases.
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Figure 1: d' values as a function of crossover frequency and
mixture SNR. Error bars indicate the + standard errors.

For low crossover frequencies, there is a strong preference for
the full-band phase-aware enhanced speech over the filtered-
merged speech, reflected as large positive d’ values. On the
other hand, listeners cannot reliably differentiate the two en-
hancement models with high crossover frequencies (> 2 kHz).
This means that estimating phase information at frequencies
higher than 2 kHz does not seem to improve speech quality.

A repeated measures analysis of variance (ANOVA) is
conducted, and it shows significant main effects of crossover
frequency [F(3.06,58.10) = 4858, p < .001, n; =
.719, Greenhouse-Geisser corrected], and background SNR
[F(1,19) = 4.68,p = .043, 7]2 = .198]. We also found signif-
icant interactions between crossover frequency and background
SNR [F'(5,95) = 3.73, p = .004, ng = .164], where the effect
of SNR is stronger at lower crossover frequencies (as reflected
in Figure[T). This suggests that estimating low-frequency phase
information is more important at lower SNRs.

3. Band Importance-driven hybrid-net for
phase-aware enhancement

Inspired by the finding from the listening experiment described
above, we introduce a novel hybrid speech enhancement frame-
work in this section. The proposed framework consists of a
phase-aware CRN that estimates low-frequency speech and then
merges them with results from another phase-insensitive CRN
that processes the high-frequency components.

3.1. Network architecture

The architecture of the proposed approach (denoted as hybrid-
net) is shown in Figure[2} The noisy speech is first transformed
into the T-F domain using the STFT, where the STFT is further
split into separate halves, using a 4 kHz cutoff frequency. The
real and imaginary parts of the lower frequency (i.e., 0 to 4 kHz)
spectrogram are fed into a sub-network based on a phase-aware
CRN. On the other hand, the high frequency (i.e., 4 to 8 kHz)
magnitude spectrogram is fed into another sub-network based
on a phase-insensitive CRN. Next, the two sub-networks encode
the input features separately with additional residual connec-
tions (i.e., additions) to enable information sharing across sub-
networks within the encoders, recurrent layers and decoders.
The phase-aware CRN then estimates the real and imaginary
parts for the lower-frequency half of the spectrogram, while the
phase-insensitive CRN predicts the magnitude spectrogram for
the higher-frequency half. Lastly, the estimated spectrograms
(noisy phase used for higher-frequency portion) are resynthe-
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Figure 2: Network architecture of the proposed hybrid-net.

sized to time-domain enhanced speech using the inverse STFT.

The configurations of the two sub-networks are identical
to the ones described before, except that we use two 512-unit
recurrent layers in both networks. The same speech materials
are used. The hybrid-net is trained with 60 epochs (or until
convergence). ADAM optimization [34] is used with a learning
rate of 1e™>. The mini-batch size is set to 24.

3.2. Listening experiment

An additional 20 subjects (12 males and 8 females) were re-
cruited from Amazon Mechanical Turk, with ages from 23 to 46
years old (avg. 38.5 years), to compare the perceived quality of
the stimuli generated by the proposed hybrid-net against those
generated by three other speech enhancement systems. These
approaches include, (1) the original phase-aware CRN [24], (2)
phase-insensitive CRN [23]] and (3) the filtered-merged speech
with a 4-kHz crossover frequency (e.g. the manual approach
from section [2). We follow the same experimental procedure
as described before, unless stated otherwise. After the practice
stage, there are 60 trials (i.e., 10 repetitions x 2 SNRs x 3 con-
ditions) randomly ordered in the main experimental stage and
the entire online experiment took less than 30 minutes for each
participant to complete. All participants self-reported to have
normal hearing, are native speakers of American English, and
were in a quiet environment during the listening experiment.

3.3. Results
3.3.1. Subjective results

Figure [3| shows the d’ values at each crossover frequency, for
each pair of comparisons (i.e., phase-insensitive model, denoted
as ‘Mag.’; filtered-merged speech at 4000 Hz, denoted as ‘4
kHz’; and phase-aware model). Note that all models are com-
pared against the stimuli generated by the proposed hybrid-net
and a higher d’ value (above 0) indicates that stimuli gener-
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Table 1: Network statistics of speech enhancement systems.

Network Statistics
System # of Param. (M) MACs (G) Inference Speed (ms)
Phase-insensitive CRN [23] 17.19 50.87 8.7
Phase-aware CRN [24] 17.45 59.22 9.0
Hybrid-net 9.46 36.28 14.2

ated by the proposed hybrid-net are more preferred. The av-
erage d' value is above zero for all comparison models, sug-
gesting that the proposed hybrid-net produces enhanced speech
with better perceived quality. This is confirmed by two-tailed
t-tests showing significant differences between the d’ values
and zero [£(19) = 18.80, p < .001 for hybrid-net versus
phase-insensitive enhanced speech; ¢(19) = 3.04, p = .007
for hybrid-net versus filtered-merged speech at 4000 Hz; and
t(19) = 541, p < .001 for hybrid-net versus full-band
phase-sensitive enhanced speech]. Note that listeners prefer
the hybrid-net enhanced speech even compared to the full-band
phase-aware CRN.

A repeated measures ANOVA was conducted on d’ value
scores and the results show a significant main effect of dif-
ferent comparison models [F'(2,38) = 101.67, p < .001,
ni = .843]. There are no significant effects of background
SNR [F(1,19) = .691, p = .416, 7712, = .035], neither are
there any significant interactions between comparison models
and background SNR [F'(2, 38) = .61, p = .549, 772 = .031].

3.3.2. Computational efficiency

We further determine whether the hybrid enhancement frame-
work reduces the computational resources (e.g., model size,
computations involved) compared to the original full-band
phase-aware CRN. We present the model size (i.e., number of
parameters), multiply-accumulate (MAC) operations [T_] and in-
ference speed (i.e., average running time for processing 1s of
audio input) as metrics for model complexity in Table[I] The
inference speed is measured using a single Nvidia Tesla V100
GPU, where we set the batch size to 1.

The proposed hybrid-net is approximately half the size
(54.2%) of the original phase-aware CRN (i.e., 9.46 M vs.
17.45 M) and achieves a relative 38.7% reduction in MACs
(i.e., 36.28 G vs. 59.22 G). The results here suggest that the
proposed hybrid-net has better compatibility for low-resource
devices, such as digital hearing-aids. However, the inference
speed for the proposed hybrid-net is slower than other speech
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enhancement systems. This is likely caused by the two com-
putation flows and their interactions for the low-frequency and
high-frequency processing. This gap could be potentially alle-
viated by optimizing the parallel process between the two com-
putation flows.

4. Discussion

Experimental results demonstrate that estimating phase is
mostly important at low frequency regions for human percep-
tion of speech quality for NH listeners. One possible explana-
tion is that speech-quality judgement is, at least partially, related
to pitch perception in human listeners. The spectral and TFS
cues at low frequencies are much stronger pitch cues than the
temporal envelope cues at high frequencies, and they are easily
degraded by the presence of low-frequency phase distortions.
Therefore, phase distortions at low frequencies may be asso-
ciated with more noticeably poorer pitch salience than at high
frequencies.

We have also noticed that the proposed hybrid-net achieves
even better performance than the full-band phase-aware model
(i.e., as illustrated in Figure [3). We postulate that this could
be caused by the more accurate estimation of phase compo-
nent at the lower-frequency region with hybrid-net compared
to the full-band phase-aware model. As the proposed hybrid-
net has a specific sub-network handling phase estimation at
low-frequency regions, compared to the full-band phase-aware
CRN that estimates the full-band phase components across en-
tire spectral regions. It is possible that low-frequency compo-
nents are weighted higher for speech quality judgement, there-
fore leading to better perceived quality for hybrid-net.
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