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Abstract

Ideal binary mask (IBM) is a signal-processing technique that
retains the time-frequency regions in a mixture of target speech
and background noise when the local signal-to-noise ratio
(SNR) is higher than a local criterion (LC) and removes the
regions otherwise. The intelligibility of IBM-processed speech
is typically high and does not depend on the choice of LC for a
wide range of LC values. The current study investigates the lis-
teners’ preferences on the LC value for IBM processed speech.
Concatenated everyday sentences were mixed with three types
of background noises (airplane noise, train noise, and multi-
talker babble) and were presented continuously to the listeners
following the IBM processing. The IBM algorithm was imple-
mented so that the listeners were able to adjust the LC value in
real-time using a programmable knob. The listeners were in-
structed to adjust the LC value until the IBM-processed stimuli
reached the most preferable quality. Across 20 listeners, large
individual differences were observed for the preferred LC val-
ues. A cluster analysis identified that 11 of the 20 listeners ex-
hibited consistent patterns of results. For this main cluster of
listeners, the preferred LC value depended on the noise type,
overall SNR, and the difficulty of the target sentences.

Index Terms: speech enhancement, ideal binary mask, human
listening study

1. Introduction

Computational auditory scene analysis (e.g., CASA, [1, 2]) is
a research field that concerns modeling the peripheral and cen-
tral processes during speech recognition in noise. A common
signal-processing technique in CASA for extracting speech in-
formation from a mixture of speech and noise is ideal binary
mask (IBM). Because speech energy is sparsely distributed over
time and frequency, when embedded in background noise, a
given time-frequency region is dominated by either speech or
noise locally. Therefore, a binary time-frequency mask (i.e. the
IBM) can be used to retain the time-frequency regions domi-
nated by the speech and remove the regions dominated by the
noise [3]. Specifically, the binary mask is an array of “1”’s and
“0”s across all time-frequency regions. A value of “1” is as-
signed to a time-frequency region when the signal-to-noise ratio
(SNR) in the region is greater or equal to a predefined local cri-
terion (LC), while a value of “0” is assigned if the SNR in region
is below the LC value. The ideal binary-masked speech is ob-
tained by multiplying the binary mask and the time-frequency
representation of the speech-noise mixture and reconstruct the
masked time-frequency representation into the time domain.

It has been shown that the IBM processing described above
could significantly improve speech intelligibility. For example,
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Brungart et al. [4] applied the IBM processing to a target sen-
tence embedded in either two, three, or four competing sen-
tences. While recognizing keywords in the target sentence was
fairly challenging in the original mixtures of target and compet-
ing sentences, the performance score reached near 100-% cor-
rect after the IBM processing for LC values between -12 and 0
dB. For lower LC values (LC < -12 dB), more time-frequency
regions were retained in the IBM processed stimuli, hence the
performance approached that for the unprocessed stimuli. On
the other hand, for higher LC values (LC > 0 dB), more time-
frequency regions were removed from the IBM processed stim-
uli, and the limited glimpses of the target sentence were not suf-
ficient to support successful speech recognition. These results
have been replicated using different speech materials, types of
background noise, and overall SNRs [5, 6, 7].

One consistent finding from these previous studies is that
speech intelligibility is largely independent of LC for a wide
range of LC values (typically between -12 and 0 dB). How-
ever, this lack of dependency on LC may be caused by the
ceiling effect, because the intelligibility of IBM processed sen-
tences often reaches 100-% correct recognition. It is not yet
clear whether listeners have preference for LC when listening
to IBM-processed speech even when the speech intelligibility is
at the ceiling. The current study is among the first to measure
the listeners’ preferred LC settings for the IBM processing. A
real-time implementation of the IBM algorithm was developed,
which allowed interactive variations of the LC value online. Us-
ing the method of self-adjustment, the listeners’ preferred LC
values were measured for two types of speech materials, three
types of background noises, and three overall SNRs.

Results from the current study will provide useful guidance
to IBM-based speech enhancement. Many speech enhance-
ment algorithms aim to estimate the IBM using different signal-
proccessing techniques [8, 9, 10]. The IBM as the estimation
target depends on LC. However, the LC value is often arbitrar-
ily determined (e.g., commonly chosen as 0 dB [3, 10]), since
it has been believed that the specific choices of LC won’t sig-
nificantly affect the intelligibility of the IBM processed speech,
as long as the chosen LC value is not too low or too high. The
listeners’ preferred LC values may be more appropriate for the
construction of the IBM target for speech enhancement algo-
rithms, because it reflects not only speech intelligibility but also
factors such as listening effort [11, 12], speech quality [11, 13],
and distortions associated with the IBM processing [14, 15].

In the following sections, the real-time implementation of
the IBM processing and the methods for measuring the listen-
ers’ preferred LC values are described in Section 2. In Section
3, the estimated preferred LC values are presented and the ef-
fects of speech material, noise type, and overall SNR are evalu-
ated. Finally, conclusions are drawn in Section 4.
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Figure 1: Block diagram of the procedure for real-time IBM processing.

2. Methods
2.1. Real-time IBM algorithm

A real-time implementation of the IBM algorithm was devel-
oped to continuously present IBM processed speech and allow
interactive manipulations of the LC values. A block diagram of
the processing stages is shown in Figure 1.

The MATLAB Audio System Toolbox is utilized to read
the clean and noise-corrupted speech frame by frame from re-
spective audio files. The frame size is 128 samples (8 ms). The
clean and corrupted speech signals in each frame are passed
through a filterbank, which consists of 32 4th-order gammatone
filters with center frequencies ranged from 55 to 7743 Hz, as in
[16]. In each frequency channel, the SNR for the nth frame [i.e.
SNR(n, f)] is estimated based on the corresponding root-mean-
square (RMS) amplitudes of the clean and corrupted speech.
The IBM for the nth frame is constructed according to:

1
0

SNR(n, f) > LC(n)
otherwise

IBM(n, f) = { )

where LC(n) is the local criterion in dB for the nth frame
and its value can be varied in real-time using a programmable
knob. The resulting IBM(n, f) is then applied to the mix-
ture of the speech and noise in the nth frame. When
IBM(n, f) =IBM(n — 1, f), the original mixture is multiplied
with IBM(n, f); when IBM(n, f) = 1and IBM(n—1, f) =0,
then the mixture is gated on using a 3-ms raised cosine ramp;
and when IBM(n, f) = 0 and IBM(n — 1, f) = 1, then the
mixture is gated off using a 3-ms raised cosine ramp. The ramp-
ing of stimuli smooths out the abrupt changes between adjacent
frames introduced by the IBM processing. After applying the
IBM, the masked signals from the 32 channels are summed and
sent to the audio device for playback.

2.2. Subjects

This study was conducted following the Declaration of
Helsinki. The informed consent, approved by the Institutional
Review Board at Indiana University, was obtained from all par-
ticipants before data collection. A total of 20 native speakers
of American English (7 males, 13 females) were recruited. All
listeners were undergraduate students at Indiana University and
self-reported to have normal hearing. The experiment was com-
pleted in a single test session, which took about one hour.

2.3. Stimuli

Sentences from two speech corpora were used for the current
study, including 250 sentences from the Hearing in Noise Test
(HINT) corpus [17] produced by a male talker and the first 250
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sentences from IEEE corpus [18] produced by another male
talker. To allow continuous audio playback, all sentences for
each of the speech corpora were concatenated into a long audio
file. The speech level was fixed at 65 dB SPL. Three types of
background noises were included: airplane noise, train noise,
and multi-talker babble. The airplane and train noises were
from the ESC-50 database [19], while the speech babble was
the 10-talker babble from the AzBio database [20]. All speech
and noise signals were resampled at 16 kHz before mixing. The
level of the background noise was set according to the over-
all SNR, which was -5, 0, or 5 dB in separate conditions. All
stimuli were presented diotically to the participants via a 24-bit
soundcard (Microbook II, Mark of the Unicorn, Inc.) and a pair
of headphones (HD280 Pro, Sennheiser electronic GmbH and
Co. KG). During the experiment, the participants were seated
in a sound-attenuating booth.

2.4. Procedure

Listeners’ preferred LC values were measured in the current
study. Each listener began with a practice phase before data
collection to familiarize the listener with the experimental task.
In the practice phase, HINT sentences were used as the speech
material, multi-talker babble was used as the background noise,
and the overall SNR was set to 0 dB. The estimation of the pre-
ferred LC value was repeated three times. If the standard devia-
tion across the three estimates was greater than 5 dB, additional
estimates (2 more at most) were obtained until the standard de-
viation became less than 5 dB.

Data collection began after the practice phase. There were
a total of 18 experimental conditions (two speech materials X
three types of noise x three overall SNRs). These conditions
were tested in random order. Under each condition, six experi-
mental trials were run, leading to six estimates of the preferred
LC value. The reported result was based on the average across
the six estimates.

During each experimental trial, the listeners were presented
with continuous IBM-processed stimuli and adjusted the LC
value for the IBM algorithm in real-time using a programmable
knob (as shown in Fig 2). Rotating the knob in the clockwise
direction would increase the LC value, while rotating the knob
in the counter-clockwise direction would decrease the LC value.
When the listener adjusted the knob, the LC value incremented
or decremented in 1-dB steps. The range within which the LC
value was adjusted was between -60 and 60 dB, and the initial
LC value was randomly drawn, before each trial, from a uni-
form distribution spanning -40 and 40 dB. The listeners were
instructed to “adjust the knob so that the speech would be the
clearest and easy to listen to for a long time”. If the listeners
were able to identify their preferred LC value within 30 s, they
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Figure 2: Schematic diagram of the knob device used in exper-
iment, user can rotate the knob to increase/decrease the real-
time LC value and push the “OK” button to confirm.

could press the “OK” button on the knob to confirm and initi-
ate the next trial, except that they had to spend at least 15 s in
adjusting the knob before the “OK” button was activated. If the
listeners were still adjusting the knob when 30 s was reached,
the LC value at 30 s was taken as the preferred LC value and
the trial terminated.

3. Results and discussion

Figure 3 plots the preferred LC values from individual listeners,
averaged across the two speech materials and three noise types.
Large individual differences were observed for the preferred
LC values. For instance, the preferred LC values for listen-
ers L16 and L18 are very low, below -40 dB. The low preferred
LC values indicate that these listeners tend to keep majority of
the time-frequency regions in the IBM-processed stimuli. For
these listeners, the perceived benefits in removing those time-
frequency regions with low local SNRs may be limited. For
about half of the listeners, the preferred LC values are between
-20 and 0 dB. This range of LC values has been shown to lead to
high speech intelligibility [4, 5]. Interestingly, none of the lis-
teners has the preferred LC value above 0 dB. As mentioned in
Introduction, when the LC value is higher than 0 dB, too much
speech information would be removed by the IBM processing to
support speech understanding. Our results suggest that listeners
are sensitive to the loss of intelligibility at high LC values.

An agglomerative hierarchical cluster analysis was per-
formed on the preferred LC values estimated from all listeners.
In this analysis, data from a single listener was considered as a
18-dimensional data point (corresponding to the 18 experimen-
tal conditions). A hierarchical cluster tree was derived based on
the euclidean distances among the data points. Then, an incon-
sistency coefficient was calculated for each link in the hierar-
chical cluster tree, with high inconsistency coefficients indicat-
ing natural divisions in the data. An inconsistency coefficient
threshold of 1 was used to create distinct clusters. Using this
procedure, six distinct listener groups was identified as shown
in Figure 3.

Figure 4 plots the preferred LC values for the six listener
groups (different symbols) identified by the cluster analysis.
Among the six groups, Group 1 consists of the largest number
of listeners, i.e. 11 of the 20 listeners (L1, L3, L4, L5, L8, L9,
L10, L11, L12, L15, L20). The results for Group 1 are shown
as filled circles in Figure 4. The preferred LC values estimated
for this group of listeners were consistently higher compared to
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Figure 3: Preferred LC values (in dB) averaged across experi-
mental conditions (two speech materials, three noise types and
three overall SNRs). Error bars indicate the standard error
across six individual estimates, averaged across the 18 exper-
imental conditions. Subjects’ IDs together with their corre-
sponding groups, identified via the cluster analysis are labeled
on the vertical axis (with “G1” indicating Group 1).

0+ o] - .
3 .l ‘o %o i > K |
E i %)OO o <>v
T T
ol 0 oot s
-60 - Airplane NoiseH [ Babble Noise |
ol ‘ ‘ ‘ ‘ |/ 60 -4 20 o0
%, s Oog, LC - IEEE (dB)
5P et
I 0,% ® Group 1 (N=11)
I " < a 0 Group 2 (N=2)
Q DOD o A Group 3 (N=1)
60 - O D Trai ; . v Group 4 (N=1)
_~ [Train Noise o Group 5 (N=2)
60 -4 -20 O O Group 6 (N=3)
LC - IEEE (dB)

Figure 4: Scatter plots (IEEE vs. HINT dataset) of listener pre-
ferred LC values. The upper-left, upper-right, and bottom left
panels are for the airplane noise, babble noise, and train noise,
respectively.

other listener groups (i.e. closer to the top right corner in each
panel). Groups 2, 3, and 6 exhibit a large discrepancy between
the preferred LC values estimated using the two speech materi-
als. It is possible that the discrepancy reflects poor reliability of
the estimated preferred LC values for these listeners.

Figure 5 plots the average preferred LC values for the lis-
teners in Group 1. For all three types of noises, the preferred
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Figure 5: Averaged preferred LC values as functions of overall
SNR for the listeners in Group 1. Results for the three noise
types are shown in the three panels. In each panel, data for the
two speech materials (IEEE or HINT sentences) are indicated
using different symbols. Error bars indicate + one standard
errors of the mean.

LC values are slightly higher for IEEE than HINT sentences.
For the speech babble and train noise, the preferred LC value
increases with decreasing background noise level (i.e., increas-
ing overall SNR). A repeated-measures analysis of variance
(ANOVA) was conducted, treating speech material, noise type,
and overall SNR as the three independent variables and pre-
ferred LC value as the dependent variable. Significant main
effects of speech material [F(1,10) = 15.14,p = .003] and
overall SNR [F'(1.19,11.87) = 8.55,p = .010, Greenhouse-
Geisser corrected] were found. Post hoc pair-wise compar-
isons showed that the preferred LC value at an overall SNR
of -5 dB was significantly lower than the estimated at overall
SNRs of 0 dB [t(10) = —4.71,p = .002] or 5 dB [¢(10) =
—3.18,p = .030]. The effect of noise type was marginally
significant [F'(1.23,12.33) = 4.30,p = .053]. There was no
significant interaction found among the independent variables
(p > .05).

These results suggest that the preferred LC value depends
on the type of speech material. It is known that IEEE sentences
are less intelligible in noise than HINT sentences, partly be-
cause they contain less semantic context. Therefore, it is possi-
ble that a typical listener, represented by the listeners in Group
1 in the current study, would prefer a higher LC value for more
difficult speech materials. From the perspective of CASA, the
IBM processing provides “glimpses” of the target speech in the
spectrotemporal dips of the background noise to the listener, us-
ing the a priori knowledge on the clean speech signal. A higher
LC value in the IBM processing would increase the local SNRs
in the glimpses but reduce the total time-frequency regions cov-
ered by the glimpses [21]. When the speech material is difficult,
a typical listener seems to weight the local SNRs in the glimpses
as more important over the glimpse coverage.

The observation that the preferred LC value tends to in-
crease with increasing overall SNR agrees with the previous
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investigations on the effect of LC on the intelligibility of IBM-
processed speech. For example, Kjems et al. [6] showed that
the intelligibility of IBM-processed speech seems to depend on
the magnitude of LC relative to the overall SNR rather than the
absolute LC value. It has been recommended that the LC value
for the IBM processing should be set to 5 dB below the over-
all SNR [22]. These previous findings suggest that the effect of
LC scales with overall SNR at a rate of 1 dB/dB. Our results
indicate that the preferred LC value for the speech babble and
train noise (see the top-right and the bottom panels of Figure 5)
increased by about 8 dB as the overall SNR increased from -5 to
5 dB, which matches previous findings. For the airplane noise
(see the top-left panel of Figure 5), the preferred LC value did
not show evident dependency on overall SNR. Therefore, the
effects of LC on listener preference may depend on additional
characteristics of the background noise besides the overall SNR.

4. Conclusions

Listeners’ preference on LC for IBM-processed speech was in-
vestigated using a real-time implementation of the IBM algo-
rithm. Results suggest that the preferred LC value exhibit large
individual differences. Approximately half of the listeners show
consistent patterns of results. Specifically, for these typical lis-
tener, the preferred LC value is higher for more difficult speech
materials and for higher overall SNRs.
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