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ABSTRACT

Continuous speech separation (CSS) aims to separate overlapping
voices from a continuous influx of conversational audio containing
an unknown number of utterances spoken by an unknown num-
ber of speakers. A common application scenario is transcribing a
meeting conversation recorded by a microphone array. Prior studies
explored various deep learning models for time-frequency mask
estimation, followed by a minimum variance distortionless response
(MVDR) filter to improve the automatic speech recognition (ASR)
accuracy. The performance of these methods is fundamentally
upper-bounded by MVDR’s spatial selectivity. Recently, the all
deep learning MVDR (ADL-MVDR) model was proposed for neu-
ral beamforming and demonstrated superior performance in a target
speech extraction task using pre-segmented input. In this paper, we
further adapt ADL-MVDR to the CSS task with several enhance-
ments to enable end-to-end neural beamforming. The proposed
system achieves significant word error rate reduction over a baseline
spectral masking system on the LibriCSS dataset. Moreover, the
proposed neural beamformer is shown to be comparable to a state-
of-the-art MVDR-based system in real meeting transcription tasks,
including AMI, while showing potentials to further simplify the run-
time implementation and reduce the system latency with frame-wise
processing.

Index Terms— Continuous speech separation, LibriCSS, AMI,
automatic speech recognition, ADL-MVDR

1. INTRODUCTION

Undesirable background noises or interfering speakers often con-
taminate speech in daily communications. This poses a significant
challenge for the current automatic speech recognition (ASR) sys-
tems as they are designed for the scenario where at most one per-
son is speaking at a given time instance. Speech separation algo-
rithms have been proposed to address this issue by separating differ-
ent speaker sources from a mixture signal. Speech separation algo-
rithms have been serving as important front-ends for various differ-
ent speech communication systems, including ASR [1, 2], meeting
transcription [3], and digital hearing-aid devices [4].

With the recent advancements in deep learning, several data-
driven speech separation algorithms have been proposed [5, 6, 7],
yielding improved speech quality and intelligibility. These systems
include time-frequency (T-F) mask-based systems [8, 9], and some
other time-domain end-to-end systems such as TasNet [10], Conv-
TasNet [11] and Wave-U-Net [12]. However, these purely deep
learning-based systems focus on removing undesired interfering
sources without having constraints for limiting the solution space.

This work was performed during an internship at Microsoft.

This often results in non-linear distortions on the separated speech
that are harmful to the current ASR systems [13].

The minimum variance distortionless response (MVDR) filter
has been widely adopted to address this non-linear distortion is-
sue. It is often combined with a neural network that estimates the
speech and noise components for deriving the beamforming filtering
weights. However, the mathematically-derived MVDR solution is
not straightforward for end-to-end optimization due to numerical in-
stability [14]. For the same reason, it is also challenging to perform
adaptive beamforming on a frame-by-frame basis stably. Therefore,
the MVDR filter is usually applied on a per-segment basis. Recently,
all deep learning MVDR (ADL-MVDR) [15, 16] was proposed for
neural frame-adaptive beamforming and demonstrated superior per-
formance in audio quality of the separated signals and the ASR accu-
racy in a target speech extraction task for pre-segmented speech mix-
tures. It incorporates two separate gated recurrent unit (GRU) [17]
based networks to replace the matrix operations (e.g., matrix inverse)
involved in the conventional MVDR solution, which bypasses the
numerical instability issue and makes the end-to-end training more
feasible.

In this paper, we extend ADL-MVDR to continuous speech sep-
aration (CSS) to enable frame-wise neural beamforming. Unlike
most of the existing studies that convert pre-segmented audio mix-
ture into per-speaker separated speech, a CSS system converts long-
form unsegmented audio, including an unknown number of speakers
into a few (two in our experiments) audio streams, each of which
contains overlap-free signals [18]. This CSS design enables us to
handle overlapping speech of an unknown number of speakers with
low latency, which is preferable to serve for many real applications
such as meeting transcription. We introduce several enhancements
to make ADL-MVDR effective for the CSS setting, including steer-
ing vector normalization, the use of a voice activity detection (VAD)
network, positive semi-definite constraint on matrix inversion and
residual connection. The proposed neural beamformer is first eval-
uated on the LibriCSS [19] dataset, which consists of long-form
multi-talker real recordings generated by concatenating and mixing
utterances from LibriSpeech dataset [20]. We further compare our
systems’ performance on several real meeting recordings (including
AMI corpus [21] and Microsoft internal meetings), where the pro-
posed neural beamformer is shown to be comparable to a state-of-
the-art MVDR-based system and demonstrates potentials on reduc-
ing system latency with frame-wise beamforming.

2. TECHNICAL BACKGROUND

2.1. Continuous Speech Separation

Most of the existing speech separation algorithms operate on pre-
segmented mixtures by assuming an ideal overlap detector to be
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Fig. 1: The chunk-wise processing scheme for CSS is shown.

available. However, in real scenarios, speech separation systems
need to deal with a continuous audio stream consisting of multi-
ple speakers, which can be hours long and include both overlapped
and non-overlapped utterances. More recently, the CSS scheme [22]
has been proposed, which is defined as the process of generating a
limited number of overlap-free signals from the continuous audio
stream. To deal with the long input signals, we adopt the chunk-
wise CSS scheme proposed in [23]. As illustrated in Fig. 1, a sliding
window is used which contains three sub-windows, including the
history sub-window (Nh frames), current sub-window (Nc frames),
and future sub-window (Nf frames). For each time step, the win-
dow is moved forward by Nc frames. During test time evaluation,
the speech separation algorithm takes in the entire chunk of infor-
mation (i.e., N = Nh + Nc + Nf frames) to estimate K(= 2)
overlap-free signals for the current Nc frames. Estimated signals for
each chunk are later aligned via block stitching [19].

2.2. ADL-MVDR for Target Speech Separation

The MVDR filter aims to preserve the information from the target
direction while minimizing the power of interfering sources. Specif-
ically, the MVDR filter is defined as

hMVDR = arg min h
h

HΦVVh s.t. hHv = 1, (1)

where hMVDR is the MVDR filtering weights, superscript H denotes
the Hermitian transpose, and ΦVV is the covariance matrix of inter-
fering sources (background noise and/or interfering speakers). Vari-
able v represents the steering vector which can be approximated by
extracting the principal eigenvector of the speech covariance matrix
[24], i.e., v = P{ΦSS}. By solving Eq. (1), we have [25, 26]

hMVDR =
Φ−1

VVv

vHΦ−1
VVv

. (2)

Most existing studies estimate the covariance matrices in a chunk-
wise fashion. However, this chunk-wise processing also incurs less
flexibility and adaptability of the MVDR filter.

ADL-MVDR has been recently proposed as a fully neural
network-based beamformer that has demonstrated superior perfor-
mance in a target speech extraction task [15, 16]. The core idea
of ADL-MVDR is utilizing two separate GRU-based networks (de-
noted as GRU-Nets) to replace the matrix inversion and principal
eigenvector extraction involved in the conventional MVDR solu-
tion. Each of the GRU-Nets takes in the speech/noise covariance
matrix and estimates the steering vector or the matrix inverse on a
per-frame basis. Note that, unlike the conventional MVDR systems,
which take sums or expectations over the entire chunk to derive
the covariance matrices, the temporal information in the covariance
matrices can be leveraged in the ADL-MVDR network.

3. PROPOSED SYSTEM

The overall framework of our proposed system is depicted in Fig. 2.
The T-F mask estimator first predicts three T-F masks for CSS tasks,
including two-speaker masks and an isotropic noise mask. ADL-
MVDR then estimates time-varying beamforming weights based on
the estimated masks. Meanwhile, we introduce a VAD network
based on the GRU-Net, whose result is multiplied with the output
of ADL-MVDR. Finally, the output audio is emitted with an addi-
tional residual connection from the T-F masked speech signal. Dur-
ing training, the entire system is updated with permutation invariant
training (PIT) scheme [27].

3.1. ADL-MVDR for CSS
In the CSS scheme, at most K speech sources are assumed to be ac-
tive within each chunk. Here, we describe the proposed method with
K = 2. The normalized time-varying input covariance matrices for
the speaker and interfering noise sources can be derived as

Φ
(k)
SS (t, f) =

Ŝ
(k)
mask(t, f)Ŝ

H (k)
mask (t, f)∑T

t=1 M
(k)2
S (t, f)

,

Φ
(k)
VV(t, f) =

V̂
(k)
mask(t, f)V̂

H (k)
mask (t, f)∑T

t=1 M
(k)2
V (t, f)

,

(3)

where Φ
(k)
SS is the instantaneous speech covariance matrix for

speaker source k ∈ {0, 1}, and (t, f) represent the time and fre-
quency indices. Ŝ

(k)
mask = M

(k)
S Y is the masked speech for source

k, where Y is the multi-channel noisy speech and M
(k)
S denotes the

T-F speech mask for source k. T is the total number of frames. Sim-
ilarly, Φ

(k)
VV is the interfering source covariance matrix for source k.

The interfering source consists of two parts (i.e., ambient noise and
interfering speaker) as V̂

(k)
mask = MNY + Ŝ

(1−k)
mask , where MN is the

isotropic noise mask. Similarly we have M
(k)
V = MN + M

(1−k)
S .

Next, the time-varying variables corresponding to the steering vector
and inverse noise covariance matrix are estimated using two separate
GRU-Nets as

v̂(k)(t, f) = GRU-Netυ(Φ
(k)
SS (t, f)),

Φ̂
−1 (k)
VV (t, f) = GRU-NetVV(Φ

(k)
VV(t, f)).

(4)

Once these time-varying coefficients are obtained, the beamforming
weights hADL-MVDR ∈ CF×T×C (F and C represent the frequency
and channel dimensions, respectively) can be derived on a per-frame
basis by plugging these estimated terms into Eq. (2). Finally, the
ADL-MVDR filtered speech for source k can be obtained as

Ŝ
(k)
ADL-MVDR(t, f) = ĥ

H (k)
ADL-MVDR(t, f)Y(t, f). (5)

3.2. Enhancements to ADL-MVDR
To further enhance the performance of the ADL-MVDR in the CSS
scheme, we propose several techniques. Firstly, we introduce con-
straints on the estimated steering vector and the inverse of the covari-
ance matrix. Specifically, we apply normalization on the estimated
time-varying steering vector, where the normalized steering vector
is derived as v̄ = v̂/|v̂|. A positive semi-definite constraint is also
imposed on the estimated inverse of the interfering noise covariance
matrix. This is done by modifying the GRU-Net to estimate an up-
per triangular matrix U , by which the inverse matrix is calculated as
Φ̂−1

VV = UUH .
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Fig. 2: Diagram of proposed neural beamformer for continuous speech separation is shown.
⊙

and
⊗

represent the operations described in
Eqs. (5) and (6), respectively.

⊕
denotes the addition. The gray arrow indicates the flow pass of the second source.
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Fig. 3: ADL-MVDR module is shown. It consists of two separate
GRU-Nets to replace the principal eigenvector extraction and matrix
inversion, respectively. The estimated frame-level variables are then
used to derive the frame-level beamforming weights.

Secondly, as we mentioned at the beginning of this section, we
introduce the VAD network to control the gain of the output.

ŵ
(k)
VAD(t) = GRU-NetVAD(M

(k)
S (t, f)),

Ŝ
(k)
VAD(t, f) = Ŝ

(k)
ADL-MVDR(t, f)ŵ

(k)
VAD(t),

(6)

where Ŝ
(k)
VAD is the VAD filtered speech for source k, ŵ

(k)
VAD ∈ R de-

notes the estimated frame-level VAD weights. Finally, the separated
speech Ŝ(k) can be obtained with residual connection as

Ŝ(k)(t, f) = Ŝ
(k)
VAD(t, f) + α · Ŝ(k)

mask(t, f), (7)

where α is a weighting factor, and we use the first channel of the
masked speech for the residual connection.

3.3. Mask Estimator and GRU-Nets
We use a T-F mask estimation model proposed in [28]. The multi-
channel input speech stream is first encoded by a shared encod-
ing block (based on conformer layers [29, 7]) to extract the intra-
channel feature independently, followed by a stack of geometry ag-
nostic modules. Within each geometry agnostic module, there is a
transform-average-concatenate (TAC) block [6] and another shared
conformer to alternately encode the inter- and intra-channel informa-
tion. Finally, the encoded features are pooled out by taking the av-
erage across the channel dimension and fed into another conformer
block to estimate the three T-F masks (i.e., two speakers and one
noise [23]).

Each GRU-Net consists of two unidirectional GRU layers, fol-
lowed by another feed forward layer (FFL) as illustrated in Fig. 3.
For frame-wise coefficients estimation, the GRU-Net takes in the co-
variance matrix that is derived following Eq. (3). Note that the real
and imaginary parts are concatenated as input. We use the same ar-
chitecture for both the ADL-MVDR and VAD networks except the
difference in the number of units in each layer.

4. EXPERIMENTAL SETUP

4.1. Datasets
Our training set contains 219 hours of randomly mixed and rever-
berated utterances from WSJ1 SI-284 [30]. We simulated the multi-
channel mixtures by randomly picking the audio of one or two speak-
ers and convolving it with a 7-channel room impulse response, which
was simulated with the image method [31]. Then, the reverberated
signals were mixed with a source energy ratio between -5 and 5 dB.
Simulated isotropic noise was then added with a 0-10 dB signal-to-
noise ratio (SNR). Noise samples from MUSAN [32] were also re-
verberated and added at an SNR between -5 and 10 dB. The average
overlap ratio of the training set was about 50%.

LibriCSS [19] was used for the first experiment, which consists
of 10 hours of 7-channel recordings. Sound sources were generated
by mixing LibriSpeech utterances [20]. They were played back in
a real meeting room and recorded by a 7-channel microphone array.
Several overlap ratios were included, ranging from 0 to 40%. There
were two subsets for the 0% overlap condition: one with short (S)
inter-utterance silence and one with long (L) inter-utterance silence.

To evaluate the performance of the proposed neural beamformer
in more realistic and challenging environments, we also carried out
experiments using real meeting datasets; namely, the AMI corpus
[21] and Microsoft internal meeting dataset, dubbed as MS. The
AMI recordings were made with an 8-channel circular microphone
array, while the MS data collection used a 7-channel array used in
[19]. MS contained 60 sessions in total with various numbers of
speakers per session. In order to get the transcriptions, we adopted a
modified version of the conversation transcription system described
in [3] with a hybrid ASR model.

4.2. System Configurations
We considered two different geometry agnostic T-F mask estima-
tion models as the baseline spectral masking systems: one predicting
real-valued masks using sigmoid activation and the other estimating
complex-valued masks. We used the mask estimation model from
our recent paper [28]. The model consists of nine consecutive con-
former layers that were interleaved by two TAC layers, followed by
mean pooling and another stack of six conformer layers. Each con-
former layer used four heads with 64 dimensions and 33 convolution
kernels. See [28] for further details1.

As regards the ADL-MVDR component, we used 200 and 100
units in the two recurrent layers of GRU-Netυ , followed by an-
other 14-unit FFL with linear activation. For the GRU-NetVV,
there were 200 units in both GRU layers with another 98-unit lin-
ear FFL. For VAD weights estimation, the corresponding GRU-Net

1Note that our model setting is different from the one used in [28], and
thus the numbers cannot be directly compared.



Table 1: Continuous speech separation results on LibriCSS dataset are shown. The numbers in the left and right of ‘/’ symbol indicate the
word error rates (WERs) with real- and complex-valued masks, respectively. Best performance is marked with bold font for each condition.

Sys.
ID

Loss
type Beamformer Norm.

v
Positive semi-
definite Φ−1

VV

VAD Res.
connection

Overlap ratios (%)
0L 0S 10 20 30 40 Avg.

Baseline spectral masking systems
0 Mag. N/A N/A N/A N/A N/A 6.1/6.6 6.9/7.3 8.6/9.8 11.4/12.0 14.7/15.3 15.8/16.2 11.1/11.7
1 Log-mel N/A N/A N/A N/A N/A 6.4/6.8 6.9/7.2 9.2/9.6 11.9/12.1 15.1/15.1 16.7/17.1 11.6/11.9

Proposed neural beamformer systems
2 Mag. ADL-MVDR 7 7 7 7 9.1/9.4 9.6/8.9 11.5/11.3 13.5/14.4 16.7/16.3 18.5/17.8 13.7/13.5
3 Mag. ADL-MVDR 7 7 3 7 6.1/6.3 6.8/6.6 9.1/9.0 11.5/11.8 14.6/14.1 16.1/15.7 11.3/11.1
4 Mag. ADL-MVDR 3 7 3 7 5.9/6.1 6.5/6.7 9.0/9.0 11.3/11.1 13.9/13.6 15.4/15.0 10.9/10.7
5 Mag. ADL-MVDR 3 7 3 3 6.1/6.1 6.7/6.4 8.7/9.3 10.5/11.8 13.2/14.2 14.7/15.3 10.5/11.0
6 Mag. ADL-MVDR 3 3 3 3 6.3/6.1 6.5/6.4 8.8/9.2 11.2/11.6 13.4/14.0 15.1/15.4 10.7/11.0
7 Log-mel ADL-MVDR 7 7 3 7 6.0/5.8 6.5/6.4 9.3/8.6 11.5/10.8 14.1/13.2 15.6/15.1 11.0/10.5
8 Log-mel ADL-MVDR 3 7 3 7 6.0/6.4 6.3/6.4 8.7/8.4 10.7/11.1 12.7/13.1 14.5/15.0 10.3/10.5
9 Log-mel ADL-MVDR 3 7 3 3 6.0/6.1 6.6/6.4 8.6/8.8 10.9/11.4 12.7/13.8 14.0/15.1 10.2/10.8

10 Log-mel ADL-MVDR 3 3 3 3 6.0/6.0 6.3/6.0 8.5/8.6 10.5/11.1 12.5/13.0 14.1/14.3 10.1/10.3

featured a two-layer GRU with 200 units each, followed by a 1-unit
(i.e., frequency-independent) FFL with ReLU activation.

Two loss functions were examined; namely, the mean squared
error (MSE) of the magnitude spectra [27] and the MSE of the log-
mel features [33] obtained with 80 mel filter banks. We did not
use the scale-invariant signal-to-distortion ratio (Si-SDR) loss which
was used before for target speech extraction [15, 16]. This is because
the Si-SDR loss was found to be unstable when one source was silent
as with the CSS task. α was set to 0.5 for residual connection. The
AdamW optimizer [34] was used with a weight decay of 1e−2. A
warm-up learning schedule was used with the peak learning rate of
1e−3 followed by an exponential decay. The baseline systems were
trained for 50 epochs, and the ADL-MVDR systems were trained
jointly with the baseline systems for another 100 epochs. For CSS
chunk-wise processing, Nh, Nc, Nf were set to 1.2 s, 0.8s and 0.4
s, respectively.

5. EXPERIMENTAL RESULTS

5.1. Results on LibriCSS
The experimental results with different system configurations are
shown in Table 1. Among the systems implementing some or all
of the proposed improvements, the best performing approach was
system 10 with a real-valued mask estimator. The proposed system
achieved an approximately 9% relative WER improvement on aver-
age (i.e., 10.1 % vs. 11.1%) compared with the baseline system (i.e.,
system 0 with real-valued mask). The proposed end-to-end neural
beamforming was more advantageous for more challenging condi-
tions, yielding a 15% relative gain for the 30% overlap condition
(i.e., 12.5% vs. 14.7%).

It is noteworthy that system 3 significantly outperformed sys-
tem 2 (11.3 % vs. 13.7% for real-valued masks), and the latter even
underperformed the baseline system. This indicates that the beam-
former cannot fully eliminate the speech signals even when the out-
put T-F masks are almost zero, especially in reverberant conditions
[5]. The use of the VAD network helped the neural beamformer deal
with the case of the output source being occasionally zero, as in the
CSS task.

The results of Table 1 also show the impact of the normalized
steering vector and applying the positive semi-definite constraint.
Normalizing the estimated steering vector improved the ASR accu-
racy in most conditions. In particular, if we compare systems 3 and
4, we can see 3.5% (i.e., 11.3% vs. 10.9%) and 3.6% (i.e., 11.1%
vs. 10.7%) relative WER gains for the real- and complex-valued
mask configurations, respectively. Similar trends were observed for
systems 7 and 8. Also, the positive semi-definite constraint on the

Table 2: WERs (%) on real meeting recordings.

System MS AMI-dev AMI-eval
BF 17.8 25.0 27.3
CSS w/ MVDR 16.6 17.9 21.1
CSS w/ ADL-MVDR 16.3 18.1 20.6

estimate of Φ−1
VV was found to preserve the performance with the

reduced number of parameters.
For the proposed end-to-end neural beamformers, the log-mel

scale magnitude loss consistently yielded better ASR accuracy. For
instance, between systems 10 and 6, there were 5.6% and 6.4% rel-
ative improvements for the real- and complex-valued mask configu-
rations, respectively.

5.2. Results on Real Meeting Recordings
For the real meeting experiments, we used a larger training set con-
sisting of 438 hours of mixtures. Table 2 compares the proposed
all-neural beamformer (i.e., system 10 with real-valued masks) with
two baseline systems: one used the conventional chunk-wise MVDR
as with [28]. We also show the result with a super-directive beam-
former with real-time beam steering, which only removes ambient
noise and does not perform speech separation (denoted as BF).

For the MS dataset, the proposed ADL-MVDR achieved the best
ASR accuracy (i.e., 16.3%), which is about 8.4% and 1.8% relative
improvements over BF and the conventional MVDR systems. While
comparable performance was observed on the AMI development set
for two MVDR systems, the proposed ADL-MVDR slightly outper-
formed the conventional MVDR by relative 2.4% (i.e., 20.6% vs.
21.1%) in the AMI evaluation set. These results here suggest that
the proposed neural beamformer achieved comparable ASR accu-
racy with a state-of-the-art MVDR-based system while also enabling
frame-wise beamforming.

6. CONCLUSIONS

We developed the all-neural beamformer that enables frame-wise
beamforming for the CSS task. Our neural beamformer achieved
significant improvements in the ASR accuracy over baseline spectral
masking systems, especially in challenging overlap conditions. For
real conversation recordings, the proposed system achieved compa-
rable performance to a conventional MVDR-based system with sim-
plified runtime implementation. The experimental results suggest
that VAD is needed for the neural beamformer to work effectively
for CSS and that applying additional enhancements such as normal-
izing the steering vector further improved the performance.
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