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Abstract
Recent work has shown that it is feasible to use generative ad-
versarial networks (GANs) for speech enhancement, however,
these approaches have not been compared to state-of-the-art
(SOTA) non GAN-based approaches. Additionally, many loss
functions have been proposed for GAN-based approaches, but
they have not been adequately compared. In this study, we
propose novel convolutional recurrent GAN (CRGAN) archi-
tectures for speech enhancement. Multiple loss functions are
adopted to enable direct comparisons to other GAN-based sys-
tems. The benefits of including recurrent layers are also ex-
plored. Our results show that the proposed CRGAN model
outperforms the SOTA GAN-based models using the same loss
functions and it outperforms other non-GAN based systems, in-
dicating the benefits of using a GAN for speech enhancement.
Overall, the CRGAN model that combines an objective met-
ric loss function with the mean squared error (MSE) provides
the best performance over comparison approaches across many
evaluation metrics.
Index Terms: speech enhancement, generative adversarial net-
works, convolutional recurrent neural network

1. Introduction
Speech enhancement can be used in many communication sys-
tems, e.g., as front-ends for speech recognition systems [1, 2, 3]
or hearing aids [4, 5, 6]. Many speech enhancement algorithms
estimate a time-frequency (T-F) mask that is applied to a noisy
speech signal for enhancement (e.g., ideal ratio mask [7, 8],
complex ideal ratio mask [9, 10]). Both deep neural network
(DNN) and recurrent neural network (RNN) structures have
been utilized to estimate T-F masks. Recent RNN approaches,
such as long short-term memory (LSTM) [11] and bidirectional
LSTM (BiLSTM) [12] networks, have demonstrated superior
performance over DNN-based approaches [5], due to their abil-
ity to better capture the long-term temporal dependencies of
speech.

More recently, generative adversarial networks (GANs)
have been investigated for speech enhancement. A number
of GAN-based speech enhancement algorithms have been pro-
posed, including end-to-end approaches that directly map a
noisy speech signal to an enhanced speech signal in the time
domain [13, 14]. Other GAN-based speech enhancement al-
gorithms operate in the T-F domain [15, 16] by estimating a
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T-F mask. Current GAN-based end-to-end systems solely use
convolutional layers that have skip connections [13, 14], and
those implemented in the T-F domain either use only fully con-
nected layers [15] or a combination of recurrent and fully con-
nected layers [16]. Convolutional and fully-connected archi-
tectures cannot leverage long-term temporal information due
to the small kernal size and individual frame-level predictions,
which is crucial for speech. On the other hand, recurrent-only
layers do not fully explore the local correlations along the fre-
quency axis [17]. Additionally, existing GAN-based methods
adopt different loss functions while using different network ar-
chitectures, so it is not clear what is the best performing loss
function for training such a system.

In this paper, we incorporate a convolutional recurrent net-
work (CRN) [18] into a GAN-based speech enhancement sys-
tem, which has not been previously done. This convolutional re-
current GAN (CRGAN) exploits the advantages of both convo-
lutional neural networks (CNNs) and RNNs, where a CNN can
utilize the local correlations in the T-F domain [19], and a RNN
can capture long-term time-dependent information. We further
extend the “memory direction” of the original CRN structure in
[18] by replacing the LSTM layers with BiLSTM layers [20].
We compare the performance of our CRGAN-based models
with several recently proposed loss functions [13, 14, 15, 16],
to determine the best performing loss function for GANs. The
influence of an adversarial training scheme is also investigated
by comparing the proposed CRGANs with a non-GAN based
CRN. Furthermore, results from previous studies revealed only
a small amount of improvement over some legacy approaches
(i.e., Wiener filtering, DNN-based method) when they are eval-
uated by objective metrics [13, 14, 15]. To better understand
the benefits of GAN-based training, we additionally compare
our model with recent state-of-the-art (SOTA) non GAN-based
speech enhancement approaches.

The rest of the paper is organized as follows. Section 2
provides background information on speech enhancement us-
ing GANs. In Section 3 and 4, we describe the proposed frame-
work and loss functions of our CRGAN model. The experi-
mental setup is presented in Section 5 and results are provided
in Section 6. Finally, conclusions are drawn in Section 7.

2. Speech Enhancement Using GANs
GANs have gained much attention as an emerging deep learn-
ing architecture [21]. Unlike conventional deep-learning sys-
tems, they consist of two networks, a generator (G) and a dis-
criminator (D). This forms a minimax game scenario, where G
generates fake data to foolD, andD discriminates between real
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Figure 1: Training procedure for GANs. Discriminator D and
Generator G are trained alternately. x denotes the noisy log-
magnitude spectrogram, y represents the target (oracle) T-F
mask and ŷ is the estimated T-F mask generated by G.

and fake data. D’s output reflects the probability of the input
being real or fake and G learns to map samples x from prior
distribution X to samples y from distribution Y .

A speech enhancement system operating in the T-F domain
usually takes the magnitude spectrogram of noisy speech as the
input, predicts a target T-F mask, and resynthesizes an audio
signal from the enhanced spectrogram. Let X denote the dis-
tribution of noisy log-magnitude spectrograms x and let Y rep-
resent the distribution of target masks y. During adversarial
training, G will learn a mapping from X to Y . A depiction of
the GAN-based training procedure is shown in Figure. 1. The
discriminator D and generator G are trained alternately. In the
first step of the iteration, D updates its weights given the target
(oracle) T-F mask y that is labeled as real. Then in the sec-
ond step, D updates its weights again using predicted T-F mask
ŷ generated by G, which is labeled as fake. Eventually in the
ideal situation, given the log-magnitude noisy spectrogram as
input, G should be able to generate an estimated T-F mask that
can foolD (i.e.,D(G(x)) = ‘real’). Note that whileD is being
trained, the weights in G remain frozen, and vice versa.

3. Convolutional Recurrent GAN
The network structure for the proposed CRGAN is depicted
in Figure. 2, where G has an encoder-decoder structure that
takes the noisy log-magnitude spectrogram as the input and es-
timates a T-F mask. In the encoder, we deploy five 2-D con-
volutional layers to extract the local correlations of the speech
signal. The encoded feature is then passed to a reshape layer,
which is followed by two BiLSTM layers in the middle of the
G network. The recurrent layers capture long-term temporal
information. The decoder is simply a reversed version of the
encoder, which comprises five deconvolutional (i.e., transposed
convolution) layers. We apply batch normalization (BN) [22]
after each convolutional/deconvolutional layer. Exponential lin-
ear units (ELU) [23] are used as the activation function in the
hidden layers, while we apply a sigmoid activation function in
the output layer to estimate the T-F mask. Moreover, the G
network incorporates skip connections, which pass fine-grained
spectrogram information to the decoder. The skip connection
concatenates the output of each convolutional-encoding layer
with the input of the corresponding deconvolutional-decoding
layer. The network is deterministic, where the output is solely

dependent on the input.
D has a similar structure as G’s encoder, except that we

adopt leaky ReLU activation functions after the convolutional
layers and there is a flattening layer after the fifth convolutional
layer, which is then followed by a single-unit fully connected
(FC) layer. Here D gives two types of outputs, D(y) or Dl(y),
where D(y) indicates the sigmoidal output and Dl(y) denotes
the linear output such that σ(Dl(y)) = D(y) with σ being
the sigmoid non-linearity. These two forms of D’s output are
needed for the loss functions that are used to train the network.

4. Loss Functions
Existing GAN-based speech enhancement algorithms utilize
different loss functions to stabilize training and improve per-
formance. These loss functions have different benefits, but the
best performing loss function is unknown. We further investi-
gate three different loss functions within our CRGAN model to
answer this question. Below, we describe three loss functions
that are implemented in our model, including Wasserstein loss
[24], relativistic loss [25], and a metric-based loss [16].

4.1. Wasserstein Loss

The Wasserstein loss function improves the stability and robust-
ness of a GAN model [24]. It is formulated as

LD = −Ey∼Y [Dl(y)] + Ex∼X [Dl(G(x))]

LG = −Ex∼X [Dl(G(x))],
(1)

whereLD andLG are the Wasserstein losses for the discrimina-
tor and generator, respectively. LD maximizes the expectation
of classifying the true mask as real and it minimizes the expec-
tation of classifying a fake mask as a true one. LG maximizes
the expectation of generating a fake mask that seems real. A
gradient-penalty (GP) term is included in D’s loss, since it pre-
vents exploding and vanishing gradients [26]:

LGP = E
ỹ∼Ỹ

[(
‖∇ỹDl(ỹ)‖2 − 1

)2]
, (2)

where∇ỹDl(ỹ) is the gradient on D’s linear output, ỹ = εy +
(1 − ε)ŷ, ε is sampled from a uniform distribution from 0 to
1, ŷ denotes the generated mask from G, and Ỹ stands for the
distribution of ỹ. A L1 loss term (i.e., ||ŷt,f − yt,f ||) is added
to G to improve performance as reported in [14], where {t, f}
represent the time-frequency (T-F) point of the T-F mask, y.
Thus, the discriminator loss becomes LD + λGP ∗ LGP and
the generator loss is LG + λL1 ∗ L1. λGP and λL1 serve as
hyperparameters that control the weights of GP and L1 losses.
We use W-CRGAN to denote this model.

4.2. Relativistic Loss

A relativistic loss function is adopted in [14], since it consid-
ers the probabilities of real data being real and fake data being
real, which is an important relationship that is not considered
by conventional GANs. The discriminator and generator are
made relativistic by taking the difference between the output of
D given fake and real inputs [25]:

LD = −E(x,y)∼(X ,Y)[log(σ(Dl(y)−Dl(G(x))))]

LG = −E(x,y)∼(X ,Y)[log(σ(Dl(G(x))−Dl(y)))].
(3)

This loss, however, has high variance as G influences D, which
makes the training process unstable [14]. Alternatively, the rel-
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Figure 2: CRGAN structure. The generator estimates a T-F mask. The arrows between layers represent skip connections. The target
T-F mask and estimated mask are provided as inputs to the discriminator for all proposed models except W-CRGAN.

ativistic average loss can be formulated as [25]:

LD = −Ey∼Y [log(Dy)]− Ex∼X [log(1−DG(x))]

LG = −Ex∼X [log(DG(x))]− Ey∼Y [log(1−Dy)],
(4)

where Dy = σ(Dl(y) − Ex∼X [Dl(G(x))]) and DG(x) =
σ(Dl(G(x)) − Ey∼Y [Dl(y)]). GP and L1 terms are also in-
cluded to stabilize training for the discriminator and generator,
respectively. R-CRGAN and Ra-CRGAN denote the models
with relativistic and average relativistic loss, respectively.

4.3. Metric Loss

Optimizing a network using traditional loss functions may not
lead to noticeable quality or intelligibility improvements. Re-
cent approaches have thus turned to optimizing objective met-
rics that strongly correlate with subjective evaluations by human
observers [27, 28, 29]. This is adapted here, where the metric
loss is defined as [16]:

LD = E(x,s)∼(X ,S)[(Dl(s, s)− 1)2

+ (Dl(G(x), s)−Q′(iSTFT (G(x)), iSTFT (s)))2]

LG = Ex∼X [(Dl(G(x), s)− 1)2],
(5)

where s stands for the target speech spectrogram and Q′ stands
for the normalized evaluation metric [i.e., perceptual evaluation
of speech quality (PESQ)] whose output range becomes [0,1]
(1 means the best). iSTFT denotes the inverse short-time
Fourier transform that converts the spectrogram into a time-
domain speech signal. The first input of D is the enhanced
signal and the second input is the clean reference signal (i.e.,
D simulates the evaluation metric).

When using metric loss, without defining the target mask
explicitly, G learns a T-F mask-like representation and applies
it (with an additional multiplication layer) to the noisy speech
spectrogram. The generated enhanced spectrogram (i.e., G(x))
is then fed intoD to get the simulated metric scores as feedback
to G. In such settings, D learns the distribution of the actual
metric score and G should generate enhanced speech spectro-
grams with higher metric scores. We use M-CRGAN to repre-
sent our model with metric loss. Furthermore, we found that
adding a mean squared error (MSE) term to LG leads to im-
provements for several evaluation metrics. The generator loss
becomes LG + λMSE ∗ ||ŷt,f − yt,f ||2, with λMSE being
the hyperparameter that controls the MSE weight. We use M-
CRGAN-MSE to represent this model.

5. Experimental Setup
The proposed algorithm is evaluated on the speech dataset pre-
sented in [30]. The dataset contains 30 native English speak-
ers from the Voice Bank corpus [31], from which 28 speakers
(14 female speakers) are used in the training set and 2 other
speakers are used in the test set. There are 10 different noises
(2 artificial and 8 from the DEMAND database [32]), each of
which is mixed with the target speech at 4 different signal-to-
noise ratios (SNRs) (0, 5, 10, and 15 dB), resulting in a total
of 11572 speech-in-noise mixtures in the training set. The test
set includes 5 different noises mixed with the target speech at 4
SNRs (2.5, 7.5, 12.5, and 17.5 dB), resulting in 824 mixtures.
All mixtures are resampled to 16 kHz.

The log-magnitude spectrogram is used as the input feature,
where we use a FFT size of 512 with 25 ms window length
and 10 ms step size. For W-CRGAN and R/Ra-CRGAN, the
training target is the phase-sensitive mask (PSM) defined as
MPSM

t,f =
|st,f |
|nt,f |

cos(θt,f ) [12], where |st,f | and |nt,f | denote
magnitude spectrograms of the clean and noisy speech, respec-
tively. θt,f is the difference between the clean and noisy phase
spectrograms. PSM not only estimates the magnitude but also
takes phase into account. Hyperparameters are empirically set
to λGP = 10 and λL1 = 200 for W-CRGAN, R-CRGAN and
Ra-CRGAN, selected based on published papers [13, 14]. For
M-CRGAN-MSE, λMSE is set to 4.

The number of feature maps in the respective convolutional
layers of G’s encoder are set to: 16, 32, 64, 128, and 256, re-
spectively. The kernel size for each layer is (1,3) for the first
convolutional layer and (2,3) for the remaining layers, with
strides all set to (1,2). The BiLSTM layers consist of 2048 neu-
rons, with 1024 neurons in each direction and a time step of 100
frames. The decoder of G follows the reverse parameter setting
of the encoder. For the discriminator D, the number of feature
maps are 4, 8, 16, 32, and 64 for the respective convolutional
layers. Note that the number of input channels changes when
we apply the relativistic or metric loss,D in this case takes in in-
put pairs (i.e., clean and noisy pairs). All models are trained us-
ing the Adam optimizer [33] for 60 epochs with a learning rate
of 0.002 and a batch size of 60 except for M-CRGAN and M-
CRGAN-MSE, where we follow a similar setup as described in
[16] and use a batch size of 1. In M-CRGAN and M-CRGAN-
MSE, the time step of the Bi-LSTM layers changes with the
number of frames per utterance and each epoch contains 6000
randomly selected utterances from the training set.

We compare our proposed system with the same network



structure that does not have recurrent layers in the generator
(i.e. remove the BiLSTM) to quantify the impact that recurrent
layers have on performance. These systems are denoted as W-
CGAN, R-CGAN, Ra-CGAN, M-CGAN and M-CGAN-MSE.
We also develop a CRN with MSE loss to investigate the in-
fluence of the GAN training scheme, and a CNN-MSE model
(i.e., remove the BiLSTM) to test the influence of RNN lay-
ers on non GAN-based systems. We additionally compare with
state-of-the-art non GAN-based speech enhancment systems to
investigate whether it is beneficial to apply GAN training for
speech enhancement. We implemented two RNN-based sys-
tems, including a LSTM-based approach and a BiLSTM-based
approach. Both RNN-based speech enhancement systems have
two layers of RNN cells and a third layer of fully connected
neurons. In each recurrent layer, there are 256 LSTM nodes or
128 BiLSTM nodes for each direction, with time steps set to
100. The output layer has 257 nodes with sigmoid activation
functions that predict a PSM training target. The MSE is used
as the loss function and RMSprop [34] is applied as the opti-
mizer. The other settings are identical to the CRGAN approach.
These two approaches share similar network architectures and
training schemes that were mentioned in [11, 12], where these
approaches utilize RNN-based structures and achieve better per-
formance than traditional DNN based approaches [5].

The enhanced speech signals are evaluated using several
objective metrics, including PESQ [35] (from -0.5 to 4.5), the
short-term objective intelligibility (STOI) [36] (from 0 to 1),
CSIG (signal distortion), CBAK (intrusiveness of background
noise) and COVL (overall effect) [37] (from 1 to 5).

6. Results
The results for the different systems1 are shown in Table 1,
where all the algorithms are able to improve speech quality over
unprocessed noisy speech signals. We first compare the perfor-
mance of our model with state-of-the-art GAN-based systems.
The results indicate that our best approach achieves much better
performance in speech quality (e.g., PESQ: 2.92 in M-CRGAN-
MSE) when compared to the best performing GAN-based sys-
tem (e.g. PESQ: 2.57 in RaSGAN). Similar results occur for in-
telligibility (e.g. STOI). This also occurs when the same loss
function is used (e.g. MetricGAN). The significant improve-
ments in CSIG, CBAK and COVL also indicate that our pro-
posed systems better maintain speech integrity while removing
the background noise. We also include some non GAN-based
systems (i.e., LSTM, BiLSTM, CRN-MSE and CNN-MSE) to
verify that GAN-based systems are beneficial. It is interest-
ing to see that all the existing GAN-based speech enhancement
systems, when compared to non GAN-based systems, achieve
lower scores in both enhanced speech quality and intelligibility
(i.e., PESQ and STOI scores). Their enhanced speech also has
a greater degree of signal distortion (CSIG) and more intrusive
noise (CBAK). By comparing the performance of the proposed
CRGAN models with these non GAN-based systems, the pro-
posed models (i.e., Ra-CRGAN, M-CRGAN and M-CRGAN-
MSE) tend to achieve better performance across nearly all met-
rics (except that Ra-CRGAN achieves lower but similar perfor-
mance with BiLSTM and CRN-MSE in CSIG and COVL). This
indicates that GAN-based systems can outperform non GAN-

1We use author provided source code, when available, for compar-
ison approaches. The results for [16] are different from the original
results possibly due to differences with training hyperparameters (e.g.
the authors in [16] use 400 epochs). We attach original results if code is
not available.

Table 1: Results for the enhancement systems. Best scores are
highlighted in bold. (* indicates previously reported results.)

Setting PESQ STOI CSIG CBAK COVL
Noisy 1.97 0.921 3.35 2.44 2.63

GAN-based Systems
SEGAN [13] 2.31 0.933 3.55 2.94 2.91
MMSEGAN [15] * 2.53 0.930 3.80 3.12 3.14
RSGAN 2.51 0.937 3.82 3.16 3.15
RaSGAN [14] 2.57 0.937 3.83 3.28 3.20
MetricGAN [16] 2.49 0.925 3.81 3.05 3.13

Non GAN-based Systems
CNN-MSE 2.64 0.927 3.56 3.08 3.09
LSTM [11] 2.56 0.914 3.87 2.87 3.20
BiLSTM [12] 2.70 0.925 3.99 2.95 3.34
CRN-MSE [18] 2.74 0.934 3.86 3.14 3.30

Proposed CRGAN without Recurrent Layers
W-CGAN 2.29 0.920 2.60 2.88 2.42
R-CGAN 2.33 0.916 2.92 2.81 2.58
Ra-CGAN 2.38 0.917 2.97 2.87 2.64
M-CGAN 2.59 0.927 3.68 3.15 3.11
M-CGAN-MSE 2.66 0.926 3.89 3.05 3.27

Proposed CRGAN with Different Losses
W-CRGAN 2.60 0.930 3.35 3.09 2.97
R-CRGAN 2.72 0.932 3.67 3.09 3.17
Ra-CRGAN 2.81 0.936 3.72 3.16 3.25
M-CRGAN 2.87 0.938 4.11 3.32 3.48
M-CRGAN-MSE 2.92 0.940 4.16 3.24 3.54

based systems, when local and temporal information are con-
sidered in conjunction with appropriate loss functions. We also
notice that superior performance can be achieved by our pro-
posed CRGAN models compared to the CRN model alone with-
out the GAN framework, which reveals that adversarial training
is beneficial for speech enhancement.

We provide results of the proposed CRGAN-based models
with different loss functions and results of these models with-
out the recurrent layers, to quantify the importance of recur-
rent layers. When comparing the results, we observe a dra-
matic decrease in terms of speech quality (e.g., PESQ: 2.38 in
Ra-CGAN and 2.81 in Ra-CRGAN), intelligibility and overall
effect, which implies that recurrent layers are crucial and ben-
eficial to GAN-based systems. We also notice that for CRN,
the influence of recurrent layers is not as significant as our pro-
posed CRGAN-based systems, suggesting that the CRGAN-
based systems are more sensitive to the recurrent layers.

Among our proposed models, the CRGAN that is trained on
metric loss with an additional MSE term yields the best perfor-
mance across nearly all metrics (except that M-CRGAN achieve
better performance in CBAK). Suggesting that a metric loss is
the most beneficial loss function among the proposed ones for a
CRGAN-based speech enhancement system. The CRGAN with
relativisitc average loss achieves comparable performance.

7. Conclusions
In this study, we propose a novel GAN-based speech enhance-
ment algorithm with a convolutional recurrent structure that op-
erates in the T-F domain. Results show that our proposed mod-
els outperform other state-of-the-art GAN-based and non GAN-
based speech enhancement systems across an array of evalua-
tion metrics, indicating that it is promising to use a GAN frame-
work for speech enhancement. We conclude that the introduc-
tion of recurrent layers is important for our CRGAN model. We
also investigate the influence of the GAN training scheme and
different loss functions. The metric loss greatly improves per-
formance. By combining metric and MSE loss functions, the
CRGAN approach achieves even greater performance.
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