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ABSTRACT

Speech assessment is crucial for many applications, but cur-
rent intrusive methods cannot be used in real environments.
Data-driven approaches have been proposed, but they use
simulated speech materials or only estimate objective scores.
In this paper, we propose a novel multi-task non-intrusive
approach that is capable of simultaneously estimating both
subjective and objective scores of real-world speech, to help
facilitate learning. This approach enhances our prior work,
which estimated subjective mean-opinion scores, where our
approach now operates directly on the time-domain signal
in an end-to-end fashion. The proposed system is compared
against several state-of-the-art systems. The experimental
results show that our multi-task and end-to-end framework
leads to higher correlation performance and lower prediction
errors, according to multiple evaluation measures.

Index Terms— Speech assessment, non-intrusive metric,
subjective evaluation, neural networks

1. INTRODUCTION

Speech assessment is important for evaluating and improving
the performance of many applications, such as speech sepa-
ration [1, 2], dereverberation [3, 4], and text-to-speech (TTS)
translation [5]. Subjective ratings provide the most reliable
and accurate form of assessment, however, conducting listen-
ing studies is both time-consuming and costly. Hence, ob-
jective metrics are used, since they are easy to compute and
allow quick assessment of large-scale datasets.

Objective evaluation metrics can be divided into two
categories, intrusive and non-intrusive. Commonly used
metrics such as the perceptual evaluation of speech quality
(PESQ) [6], perceptual objective listening quality assessment
(POLQA) [7], extended short-time objective intelligibility
(eSTOI) [8] and signal-to-distortion ratio (SDR) are all in-
trusive approaches as they require a clean reference during
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assessment. The clean reference, however, is not always ac-
cessible in real-world environments which limits the practica-
bility of intrusive metrics. In contrast, non-intrusive metrics
such as ITU-T P.563 [9], speech-to-reverberation modulation
energy ratio (SRMR) [10], and ANIQUE [11] perform as-
sessment using only the corrupted speech. Although these
approaches enable real-world speech assessment, they do not
always correlate well with subjective ratings [12, 13].

Data-driven non-intrusive measures have been recently
proposed. Quality-Net [14] performs frame-level speech
quality assessment by leveraging the temporal properties of a
bidirectional LSTM (Bi-LSTM), using PESQ scores as train-
ing targets. NISQA [13] enables super wide-band speech
assessment with a convolution and LSTM based network that
estimates the POLQA score of a given stimulus. Although
these metrics have demonstrated good correlations with ob-
jective scores, only estimating objective scores is a limitation
as objective measures only serve as approximations of human
assessment [15, 16], indicating that further subjective tests are
still needed. Alternatively, some systems predict mean opin-
ion scores (MOS) collected from human listeners [17, 18].
However, like the earlier studies, noisy speech materials are
manually created which cannot fully capture all the complex
details that exist in real-world environments. Thus it is not
clear whether these approaches generalize well to unseen
real-world data. Moreover, most approaches use hand-crafted
features, including the magnitude spectrogram, but these may
not be optimal representations for speech assessment, since
many studies have shown that phase is also important for
human-assessed quality [19, 20, 21] and these features do not
allow the network to learn a more optimal representation.

We develop a novel non-intrusive assessment approach,
where an encoder first uses convolution and pyramid Bi-
LSTM (pBi-LSTM) layers to extract features locally and
temporally at different resolutions, directly from the time-
domain signal. Then an attention mechanism is applied in
a decoder for multi-task learning. The proposed system
assesses speech from multiple perspectives, including sub-
jective and objective speech quality (i.e., human MOS and
PESQ), objective intelligibility and signal distortions (i.e.,



eSTOI and SDR). Our prior work [22] successfully estimates
the subjective quality of real-world speech, but it does not
assess other properties, such as signal distortion or intelligi-
bility which limits its applicability. A multi-task approach
is developed in [23], but it only estimates objective scores
using simulated data. There are three main contributions
in this work. Firstly, to the best of our knowledge, this is
the first non-intrusive speech assessment system that esti-
mates both subjective and objective ratings for real-world
recorded speech. Secondly, an end-to-end model is devel-
oped by encoding the time-domain speech with a convolution
layer rather than the conventional short-time Fourier trans-
form (STFT) which may not be optimal. Lastly, although
not shown here, this approach enables direct comparisons
between real-world and laboratory experiments, which can
help solve the generalization problem.

2. REAL-WORLD SPEECH DATA

2.1. Speech Data and Crowdsource Labelling

We use the VOiCES [24] and the COSINE [25] corpora as
the source for the real-world speech materials. VOiCES was
recorded in acoustically challenging and reverberant environ-
ments using twelve mics strategically placed around different
rooms. Recordings from two of the mics are used as rever-
berant stimuli and the foreground speech is used as the refer-
ence signal. The approximated speech-to-reverberation ratios
(SRRs) of these signals range from−4.9 to 4.3 dB. COSINE,
on the other hand, was recorded in a multi-party conversa-
tional setting both indoor and outdoor to represent various
background noises with seven mics: a 4-mic array placed on
the speaker’s chest, a close-talking mic, a throat mic and a
shoulder mic. Since the recording from the close-talking mic
captures high quality speech, we use it as the clean reference.
Recordings from the shoulder mic and the 4-mic array are
used as noisy signals. The speech-to-noise ratios (SNRs) for
COSINE are approximately between −10.1 to 11.4 dB.

We crowdsourced our listening tests on Amazon Mechan-
ical Turk by publishing 700 human intelligence tasks (HITs),
each of which was completed by 5 workers. In total 3,500
workers participated (1,455 females and 2,045 males), aged
from 18 to 65 years old. All participants are native English
speakers and self-reported to have normal hearing. Each HIT
contains 15 trials of evaluations that follow ITU-R BS.1534
[26]. Each trial has multiple stimuli from varying conditions
including a hidden clean reference, an anchor (low-pass clean
reference) and multiple real-world noisy or reverberant sig-
nals. Users provide quality ratings (between 0 to 100) for
all stimuli. A total of 180K responses are collected for 36K
signals (18K signals per dataset) with a total duration of ap-
proximately 45 hours. This study has been approved by our
Institutional Review Board. This dataset will be open-sourced
in the future and more information is provided in [22].

Fig. 1. Correlations between subjective and objective ratings
on two real-world corpora (COSINE - blue, VOiCES - red).

2.2. Data Pre-processing
To remove potential outliers in the collected responses, we
first calculated the Z-score for each stimulus across conditions
and those with absolute Z-scores above 2.5 are filtered out
[27]. Min-max normalization is then performed to normal-
ize the range of ratings between 0 to 10. We further adopted
two robust non-parametric techniques to remove outliers with
large deviations [28, 29]. The MOS is then computed as the
average scaled ratings for each stimuli. After these steps, the
clean reference, anchor and noisy speech for COSINE and
VOiCES have an average MOS of 7.38 (S.D. = 0.68) and 8.46
(S.D. = 0.26), 4.89 (S.D. = 0.34) and 6.74 (S.D. = 0.39), 4.04
(S.D. = 0.85) and 2.74 (S.D. = 0.65), respectively. The corre-
lations between the MOS and two objective ratings are shown
in Fig. 1. The upward trend between subjective and objectives
scores indicate that there are some correlations between the
two, and that jointly estimating them may be beneficial. The
Pearson’s correlation coefficients (PCC) between the scores
for COSINE and VOiCES are: PESQ (PCC=0.69 and 0.96),
and eSTOI (PCC=0.70 and 0.96).

3. DATA-DRIVEN MULTI-TASK MODEL

To estimate the subjective and objective scores, our model
adopts a hard parameter sharing scheme of multi-task learn-
ing [30], where the shared-encoding layers are forced to learn
generalized features from the input speech signal. It is re-
ported that the way multi-task learning assesses the speech
from different perspectives can account for the heterogene-
ity of quality ratings [31]. Incorporating this hard parameter
sharing scheme of multi-task learning can further help to im-
prove the generalization performance of our model.

3.1. Network Architecture

Our proposed model consists of two types of layers, the
shared-encoder layers and the task-specific decoding layers
that are based on attention mechanisms (Fig. 2). The time-
domain speech is first passed through a 1D convolution layer
to extract features, then the shared information for multi-
task learning is captured using convolution and pBi-LSTM
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Fig. 2. Network architecture of our proposed non-intrusive
metric. The pBi-LSTM block is illustrated in Fig. 3.

layers. The 2D convolution operation is good at capturing
local dependencies of the encoded speech signal [32], and the
pBi-LSTM layers can further explore the encoded feature at
different temporal resolutions [33]. Then the decoder focuses
on different aspects of the learned latent feature and makes
task specific estimates of the different metrics.

Each convolution block consists of a 2D convolution layer
with ReLU activations followed by batch normalization. An-
other average pooling layer is then applied to reduce the fea-
ture space of the encoded feature. Every pBi-LSTM block
reduces the temporal size of the latent feature by half each
time (see Fig. 3), where each output hidden state is merged
with its one nearby hidden state. This is formulated as

htpBi-LSTM = h2t−1
Bi-LSTM + h2tBi-LSTM, (1)

where htpBi-LSTM represents the output hidden state of a pBi-
LSTM layer at time t, and h2tBi-LSTM is the hidden state out-
put of a conventional Bi-LSTM layer at time 2t. The output
hidden states h of the pBi-LSTM blocks has a temporal di-
mension of size T/M , where T denotes the original temporal
dimension of the latent feature before feeding into the pBi-
LSTM blocks and M = 2L is a temporal reduction number
and L is the number of pBi-LSTM blocks. Then the atten-
tion block helps the network focus on task-specific goals to
improve performance. We use self-attention mechanism [34],
where it takes the same input (i.e., the encoded hidden states
h of the pBi-LSTM block) to derive the query Qh, key Kh

and value Vh pairs. This process is formulated as

fself-attention(Qh,Kh, Vh) = softmax{QhK
T
h√

dh
}Vh, (2)

where dh is the feature dimension of the encoded hidden
states. Qh = hWQ is the query and WQ is the correspond-
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Fig. 3. Illustration for one block of pBi-LSTM.

ing projection weight. Similarly, Kh and Vh can be derived
with their corresponding projection weights WK and WV .
We use ReLU as the output activation function for all the
targets except for SDR, where a linear activation is used.

The model is trained in an end-to-end manner by minimiz-
ing the total mean squared error (MSE) of all training targets:

LModel =

K∑
k=1

αkLk
MSE, (3)

where K represents the total number of training targets, αk

denotes the corresponding weight for each individual MSE
loss Lk

MSE calculated for different targets.

4. EXPERIMENTAL DESIGN

4.1. Experimental Setup

All signals are resampled at 16 kHz. Both the VOiCES and
COSINE datasets are randomly split into training (80%), vali-
dation (10%) and testing (10%) subsets. Audios are truncated
to 4 s and a 20 sample kernel with 10 sample stride are used
for 1D convolution, where 257 output channels are produced.
We use four 2D convolution blocks for our model, and a ker-
nel size of 3×3 in each layer. The output channels are set to
16, 32, 64 and 128. We use 3 blocks of the pBi-LSTM (with
128, 64 and 32 units in each direction), which results in a tem-
poral reduction factor of M = 8. The training targets are hu-
man MOS (ranging from 0-10), PESQ (-0.5 to 4.5), eSTOI (0
to 1) and SDR (-25 dB to 36 dB). We determine the weights
for each loss term in Eq. (3) empirically, where α1 = 10,
α2 = 1, α3 = 12, α4 = 0.1 for MOS, PESQ, eSTOI and
SDR, respectively. The models are trained with 100 epochs
using Adam optimizer and all models are trained and evalu-
ated separately on COSINE and VOiCES datasets.

We include 5 non-intrusive data-driven models as com-
parison approaches, including a multi-task model for objec-
tive score estimation (AMSA) [23], a deep neural network
(DNN) model [18], Quality-Net [14], NISQA [13] and pBi-
LSTM+Att [22]. Note that all these data-driven models ex-
cept AMSA are separately trained for each target since they



Table 1. Average performance between comparison and our proposed models. ‘-’ indicates that the model is not capable of
estimating such scores. The best results are in bold.

MOS PESQ eSTOI SDR
Systems MAE PCC SRCC MAE PCC SRCC MAE PCC SRCC MAE PCC SRCC

AMSA [23] - - - 0.30 0.94 0.79 0.11 0.90 0.78 5.20 0.94 0.83
DNN [18] 0.49 0.94 0.88 0.19 0.96 0.83 0.05 0.96 0.86 3.50 0.98 0.88

Quality-Net [14] 0.48 0.93 0.87 0.15 0.97 0.81 0.06 0.95 0.80 2.72 0.96 0.88
NISQA [13] 0.50 0.96 0.90 0.18 0.98 0.88 0.06 0.96 0.88 2.20 0.98 0.93

pBi-LSTM+Att [22] 0.44 0.94 0.88 0.17 0.95 0.78 0.05 0.95 0.74 3.58 0.94 0.83
Prop. System (STFT) 0.42 0.95 0.88 0.17 0.95 0.80 0.04 0.94 0.85 2.69 0.97 0.89

Prop. System (1D-Conv) 0.40 0.96 0.90 0.12 0.98 0.89 0.04 0.97 0.88 1.87 0.99 0.93

Fig. 4. Correlation between estimated scores and groundtruth
on COSINE and VOiCES datasets (left: MOS, right: PESQ).

are not designed for multi-task estimation. We use the mean
absolute error (MAE), PCC and Spearman’s rank correlation
coefficient (SRCC) to assess performance.

5. EXPERIMENTAL RESULTS AND ANALYSIS

The average performance across both datasets is shown in Ta-
ble 1. Our proposed approach (i.e. with 1D-Conv) achieves
the best performance according to all evaluation metrics. Our
system obtains a PCC of 0.96 vs. 0.93 in MOS, when com-
pared to the Quality-Net. The SRCC is also higher (0.90 vs.
0.87). It suggests that our proposed system can better cor-
relate with human ratings on real-world datasets. For PESQ
estimation, the proposed approach also achieves the best per-
formance (e.g., PCC 0.98 vs 0.95 in pBi-LSTM+Att). Al-
though Quality-Net achieves similar performance on PCC in
PESQ, its SRCC is lower than our approach (0.81 vs. 0.89).
For objective speech intelligibility (i.e., eSTOI), our approach
outperforms Quality-Net in terms of the monotonicity by 10%
(i.e., SRCC, 0.88 vs. 0.80). Nonetheless, our model can better
capture the signal distortion effects in the real-world speech
signals, for SDR target, the PCC is 0.99 with an SRCC of
0.93. When compared to NISQA, although similar correla-
tion performance is achieved for some targets, our model per-
forms better according to MAE (MOS: 0.40 vs. 0.50, PESQ:
0.12 vs. 0.18, eSTOI: 0.04 vs. 0.06 and SDR: 1.87 vs. 2.20).

Note that the comparison approaches: DNN, Quality-Net,
NISQA and pBi-LSTM+Att are all trained and evaluated for
a single target each time, while our approach assesses the

speech from different perspectives at the same time. There-
fore, we further compare our approach with our prior work
(i.e., AMSA [23]) that is capable of estimating multiple ob-
jective targets. Results still demonstrate the superiority of
our system in all these objective targets, where joint subjec-
tive and objective assessment improves performance. For in-
stance, on PESQ, our model achieves a PCC of 0.98 vs 0.94 in
AMSA. For eSTOI, our model has a PCC of 0.97 compared to
0.90 in AMSA and PCC of 0.99 vs. 0.94 in SDR. The differ-
ence here suggest that our model is not only more capable in
assessing multiple objective targets at the same time but also
generalizes well on unseen human data.

Among our proposed models with different speech en-
coders, we find that the learnable 1D convolution layer leads
to slight improvements for all targets in nearly all criteria
(e.g., PCC on MOS: 0.96 vs. 0.95, PCC on PESQ: 0.98 vs.
0.95, PCC on eSTOI: 0.97 vs. 0.94 and PCC on SDR: 0.99 vs.
0.97). This suggests that the 1D-Conv can better encode the
input speech than conventional STFT under mutli-task learn-
ing scenarios. We also illustrate the correlation results of our
proposed model on the estimated MOS and PESQ scores in
Fig. 4. It is easy to observe that our model has most of its
estimations fall on the diagonals which reflects the high cor-
relation results represented in Table 1.

6. CONCLUSIONS

We proposed a novel multi-task data-driven non-intrusive
speech assessment model that is capable of analyzing the
speech quality from subjective and different objective per-
spectives. The experimental results demonstrate that our
proposed model achieves higher correlations, lower esti-
mation errors when compared to the other state-of-the-art
systems. The results also suggest a better encoding capability
with a 1D convolution layer instead of conventional STFT.
Our future work will move on to subjective intelligibility
estimation.
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